A bi-objective identical parallel machine scheduling problem with controllable processing times: a just-in-time approach

نویسندگان

  • M. H. Fazel Zarandi
  • Vahid Kayvanfar
چکیده

In this research, a bi-objective scheduling problem with controllable processing times on identical parallel machines is investigated. The direction of this paper is mainly motivated by the adoption of the just-in-time (JIT) philosophy on identical parallel machines in terms of bi-objective approach, where the job processing times are controllable. The aim of this study is to simultaneously minimize (1) total cost of tardiness, earliness as well as compression and expansion costs of job processing times and (2) maximum completion time or makespan. Also, the best possible set amount of compression/expansion of processing times on each machine is acquired via the proposed “bi-objective parallel net benefit compression-net benefit expansion” (BPNBC-NBE) heuristic. Besides that, a sequence of jobs on each machine, with capability of processing all jobs, is determined. In this area, no inserted idle time is allowed after starting machine processing. For solving such bi-objective problem, two multi-objective meta-heuristic algorithms, i.e., non-dominated sorting genetic algorithm II (NSGAII) and non-dominated ranking genetic algorithm (NRGA) are applied. Also, three measurement factors are then employed to evaluate the algorithms’ performance. Experimental results reveal that NRGA has better convergence near the true Pareto-optimal front as compared to NSGAII, while NSGAII finds a better spread in the entire Pareto-optimal region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics

This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...

متن کامل

An Efficient Bi-objective Genetic Algorithm for the Single Batch-Processing Machine Scheduling Problem with Sequence Dependent Family Setup Time and Non-identical Job Sizes

This paper considers the problem of minimizing make-span and maximum tardiness simultaneously for scheduling jobs under non-identical job sizes, dynamic job arrivals, incompatible job families,and sequence-dependentfamily setup time on the single batch- processor, where split size of jobs is allowed between batches. At first, a new Mixed Integer Linear Programming (MILP) model is proposed for t...

متن کامل

A New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering

This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...

متن کامل

SINGLE MACHINE DUE DATE ASSIGNMENT SCHEDULING PROBLEM WITH PRECEDENCE CONSTRAINTS AND CONTROLLABLE PROCESSING TIMES IN FUZZY ENVIRONMENT

In this paper, a due date assignment scheduling problem with precedence constraints and controllable processing times in uncertain environment is investigated, in which the basic processing time of each job is assumed to be the symmetric trapezoidal fuzzy number, and the linear resource consumption function is used.The objective is to minimize the crisp possibilistic mean (or expected) value of...

متن کامل

A New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm

This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014